N ovel photochemical behaviour of the oximes and hydrazones of

 β, γ-unsaturated carbonyl compoundsD iego A rmesto,* A na R amos, M aria J. O rtiz, W illiam M. H orspool, \dagger
M aria J. M ancheño, O Iga C aballero and E lena P. M ayoral
Departamento de Q uimica Organica, Facultad de Ciencias Q uimicas, U niversidad Complutense, 28040-M adrid, Spain

Abstract

A study of the photochemical reactivity of a series of β, γ-unsaturated oximes and hydrazone derivatives under triplet sensitized conditions has been carried out. The oximes $3 \mathrm{c}, 4 \mathrm{a}$ and 4 c cyclize to the corresponding dihydroisoxazoles $5 \mathrm{c}, 6 \mathrm{a}$ and 6 c while the tosyl hydrazone 8 a affords the dihydropyrazole 9a. A n intramolecular single electron-transfer mechanism from the alkene moiety to the oximino group, in the case of the oximes $3 \mathrm{c}, 4 \mathrm{a}$ and 4 c , and to the tosyl group for the tosyl hydrazone 8a, is proposed to account for these results. 0 ximes and hydrazine derivatives from aldehydes behave differently. Thus, the oxime 3d yields the cyclopropyl oxime 10 by an aza di- π-methane (A D PM) rearrangement while the aldoxime 3 e gives a mixture of the corresponding dihydroisoxazole 5 d and cyclopropane 11a resulting from an AD PM process. Irradiation of the hydrazine derivatives $8 \mathrm{~b}, 8 \mathrm{c}$ and 8 d gives a mixture of the corresponding dihydropyrazoles $9 \mathrm{~b}, 9 \mathrm{c}$ and 9 d and the cyclopropanes 11 b , 11c and 11d, respectively. H owever, under the same experimental conditions, dihydronaphthalene derivatives such as the oxime 12a and the tosyl hydrazone 12 b undergo A D PM rearrangements exclusively, affording the cyclopropanes 13a and 13b, respectively. Sensitized irradiation of the tosyl hydrazone 12 c yields the cyclopropane 13c, as the major product. In this instance a small amount of the hexahydrophenanthroline 14, resulting from an endo cyclization is also formed. The influence of substitution on the outcome of the reaction is discussed.

Introduction

For many years acyclic β, γ-unsaturated oximes and oximeethers were thought to be photochemically unreactive ${ }^{1,2}$ U ntil very recently the only reported reactivity of this type of compounds was E,Z-isomerization around the $\mathrm{C}-\mathrm{N}$ double bond in acyclic systems ${ }^{2}$ and the aza-di- π-methane (ADPM) reactivity of the β, γ-unsaturated oximes $\mathbf{1}$ whereirradiation brings about the formation of the tetracyclic compounds $2 .{ }^{3}$ Contrary to the

1 R=H or Me

2

3a $R^{1}=R^{2}=P h$
3b $R^{1}=M_{\theta}, R^{2}=P h$
3c $R^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H}$
3d $R^{1}=R^{2}=H$
3e $R^{1}=H, R^{2}=P h$

4a $n=1$
$4 b n=2$
4c $n=3$

5a $R^{1}=R^{2}=P h$ 5b $R^{1}=M \theta, R^{2}=P h$ 5c $R^{1}=P h, R^{2}=H$
5d $R^{1}=H, R^{2}=P h$

6a $n=1$
$6 \mathrm{~b} \quad \mathrm{n}=2$
6c $n=3$
supposed inertness of the acyclic derivatives we have demonstrated recently that some β, γ-unsaturated oximes are reactive by the ADPM mode. ${ }^{4}$ This rearrangement occurs in molecules where the reaction proceeds via 'stable' biradical intermediates. Alternatively we have reported examples where irradiation of

[^0]ketoximes such as $\mathbf{3 a}, \mathbf{3 b}$ and $\mathbf{4 b}$ results in the formation of the new dihydroisoxazoles $\mathbf{5 a} \mathbf{a} \mathbf{5}$ and $\mathbf{6 b}$, respectively. ${ }^{5}$ This cyclization was considered to be controlled by an SET process from the alkene moiety to the oximino group as shown in Scheme 1

Scheme 1
for the oxime 3a. Cyclization within the zwitterionic biradical 7 followed by back electron transfer and hydrogen migration affords the final product
In our previous report ${ }^{5}$ of the photochemical formation of dihydroisoxazoles from the oximes $\mathbf{3 a}, \mathbf{3 b}$ and $\mathbf{4 b}$, the cyclization was most effective with a phenyl substituent on the oximino carbon (i.e. $\mathbf{3 a}$). The oximes $\mathbf{3 b}$ and $\mathbf{4 b}$, with alkyl substitution at that position, also undergo the cyclization as the sole process, although less efficiently. A ssociated with this we have published a preliminary account of analogous cyclizations in the sensitized irradiation of β, γ-unsaturated hydrazone derivatives 8 that afford dihydropyrazoles $9 .{ }^{6}$ The present pub-
lication details our studies to establish the features within these types of molecules that control the outcome of these two cyclizations.

Results and discussion

The present study was aimed at determining the influence of changes in substitution at $\mathrm{C}-1$ and $\mathrm{C}-4$, in the acyclic oximes 3 and changes in ring size in the cyclic oximes 4. The compounds selected for this study were the oximes 3c, 3d, 3e, 4a and 4c. The synthesis of the oximes $3 \mathrm{~d}^{7}$ and $3 \mathrm{e}^{1}$ has been reported by us. The oxime 3c was readily synthesized by standard oximation procedures from the corresponding carbonyl compound described previously in the literature. ${ }^{8}$ A cetophenone-sensitized irradiation of the ketoxime 3 c for 1 h brought about the formation of 5 c in 15% yield and starting material 3 c (72%) as a mixture of E / Z-isomers of the $\mathrm{C}-\mathrm{C}$ double bond. This result shows that the change in substitution in $\mathrm{C}-4$ from diphenyl in 3a to monophenyl in 3c does not affect the outcome of the reaction adversely. The formation of the dihydroisoxazole 5c fits within the mechanism shown in Scheme 1. However, under the same experimental conditions, the aldoxime 3d undergoes an ADPM rearrangement exclusively affording the cyclopropane 10. This compound was unequivocally identified by conversion into the corresponding oxime acetate previously described by us. ${ }^{7}$ R egardless of the marked change in behaviour between 3c and 3d these results are in agreement with our previous findings. As mentioned above aldoximes in which the biradical intermediate is stabilized by conjugation with phenyl rings undergo ADPM rearrangement while the phenyl ketoxime 3a, with a phenyl substituent at $\mathrm{C}-1$, gives the dihydroisoxazole 5a. However, the successful ADPM reactivity of 3d casts doubts on the lack of reactivity of the aldoxime 3 e , previously reported by us, ${ }^{1}$ and a reinvestigation of the photoreactivity of this compound was necessary. A careful analysis of the crude reaction mixture obtained from the acetophenonesensitized irradiation of 3 e , for 1 h , demonstrated that this compound is photochemically reactive contrary to our previous report. This treatment yields the cyclopropyl oxime 11a in 10\% yield, the dihydroisoxazole 5d in 8% yield in addition to recovered starting material (58\%).

$8 \mathbf{a} R=M e, X=T s$ 8b $\mathrm{R}=\mathrm{H}, \mathrm{X}=\mathrm{Ts}$
8c $R=H, X=B z$
Bd $R=H, X=A C$
e $R=P h, X=T s$

10

9a $R=M e, X=T s$
$9 b R=H, X=T s$
9c $\mathrm{R}=\mathrm{H}, \mathrm{X}=\mathrm{Bz}$ 9d $R=H, X=A C$

11a $X=\mathrm{OH}$
11b $\mathrm{X}=\mathrm{NHT}$
11c $X=N H B Z$
11d $\mathrm{X}=$ NHAc

The differences observed in the results from this series of compounds can be interpreted in terms of SET involvement or the lack of it. Thus we observe a gradation in reactivity in this series. The cyclization of the original compound 3a shows that the phenylhydroxyimino moiety is a good electron acceptor and the diphenylvinyl group is well known to be a good donor. ${ }^{9}$ Thus SET is favoured and cyclization (see Scheme 1) yields the dihydroisoxazole 5a comparatively efficiently (38% within 10

Table 1 Yield of photoproducts

Starting compd.	ADPM product (\%)	Five membered-ring heterocycle (\%)
3 c	-	5c (15)
3d	10 (19)	-
3 e	11a (10)	5d (8)
4 a	-	6a (20)
4c	-	6c (12)
8 a	-	9a (75)
8 b	11b (7)*	9b (18)
8 C	11c (22)	9c (11)
8d	11d (68)*	9d (1)
12b	13b (68)	-
12c	13c (46)	-

* I solated as the corresponding aldehyde.
$\mathrm{min}) .{ }^{5}$ In the oxime 3 c the electron-accepting ability of the hydroxyimino group is unchanged but the vinyl moiety is less efficient in electron transfer reactions but is still able to undergo the SET ${ }^{10}$ and as a result $\mathbf{5 c}$ is formed less efficiently. D ecreasing the electron-accepting capacity of the hydroxyimino group in 3d and retaining the poorer electron-donating phenylvinyl group provides a situation where electron transfer apparently does not take place and the A D PM process takes over affording the cyclopropyl oxime 10. In derivative $\mathbf{3 e}$ the hydroxyimino group remains the same but the vinyl substituent is now the good electron-donating diphenylvinyl system. With this compound a balance between electron transfer, affording 5d, and ADPM reactivity giving 11a is observed. Thus it is clear that ketoxime derivatives show a preference for the electron transfer process and the formation of dihydroisoxazoles while the aldoxime derivatives follow the ADPM path preferentially.

The capacity for the ketoximes to undergo SET and cyclization to dihydroisoxazoles is also observed with the derivatives $\mathbf{4 a}$ and $\mathbf{4 c}$. These two compounds are readily prepared by reaction of the corresponding 1-methyl-2-oxocycloalkanecarbaldehyde ${ }^{11}$ with benzyltriphenylphosphonium ylide, followed by oximation. Brief irradiation of both of these affords the corresponding dihydroisoxazoles $6 \mathbf{a}$ and $6 \mathbf{c}$ in 20 and 12% yields, respectively. It is worthwhile noting that prolonged irradiation of these oximes and also of the oximes 3, does not increase the yield of product markedly. In qualitative terms there is little variation in the apparent efficiency of the reaction of theoximes $4 \mathbf{a}$ and $\mathbf{4 c}$, compared with the previously reported cyclization of theoxime $\mathbf{4 b}$ that gives $\mathbf{6} \mathbf{b}$ in 20% yield. ${ }^{5}$ Thus ring size does not appear to influence the cyclization process.

The foregoing demonstrates that if SET takes place then cyclization involving the oxygen of the oxime to the cation centre is a viable process. It should, therefore, be possible to observe analogous reactivity with other derivatives of β, γ unsaturated carbonyl compounds such as the hydrazones. This was demonstrated previously by us and the results were published in a preliminary form. ${ }^{6}$ Since the best yield for the formation of dihydroisoxazoles in the oxime examples took place with the phenyl ketone derivative 3a, it was logical to study the reactivity of the corresponding hydrazone derivative $\mathbf{8 e}$. All the attempts to synthesize this compound by condensation of the corresponding carbonyl compound with tosylhydrazidewereunsuccessful. This could be due to the low reactivity of the phenyl ketone towards nucleophilic attack. However, the hydrazone derivatives 8 a -d were obtained in good yield by condensation between the corresponding carbonyl compounds and hydrazine derivatives. A cetophenone-sensitized irradiation of 8 a follows an analogous reaction path of the oxime cyclization and yields the dihydropyrazole 9a in 75% yield. The success with this reaction suggests that the tosylhydrazone moiety is an even better electron acceptor than is the oxime. When the aldehydo derivative $\mathbf{8 b}$ was irradiated the reactivity observed is also in agree ment with our earlier observations with the oxime derivatives
and one of the products of the reaction is the dihydropyrazole 9 obtained in 18% yield. The reaction, however, also affords the ADPM product, the cyclopropane 11b, in 9\% yield. Thus it is obvious that there is a partitioning of the reaction between the electron transfer path to the dihydropyrazole and the ADPM path to the cyclopropane. In order to explain the formation of dihydropyrazoles we propose a mechanism involving SET from the alkene moiety to the substituent on the terminal nitrogen, as shown in Scheme 2 for tosylhydrazone 8a. Cycliz-

Scheme 2
ation within the resultant zwitterionic biradical affords the heterocyclic product. This mechanism provides an explanation for the different yields of dihydropyrazoles obtained in the irradiation of $\mathbf{8 a}$ and $\mathbf{8 b}$ and those obtained in the irradiation of 8 c and $8 \mathrm{~d} .{ }^{6}$ Thus, with the tosyl derivative 8 a the yield is highest of all, the benzoyl derivative 8 c gives a reduced yield of the dihydropyrazole 9c (11\%) and the acetyl derivative 8d affords only a trace of 9 d (1\%). Interestingly, as the ability of the hydrazone substituent to accept an electron decreases the yield of the A DPM product 11c and 11d, respectively, increases to 22% with 8 c and 68% with 8 d .

The study with the oxime derivatives has shown that the best yields of heterocyclic products are obtained with the phenyl ketone derivatives. However, the oxime 12a is an exception to this generalization. The oxime 12a, is readily synthesized by methylation of 2-(3,4-dihydro-2-naphthyl)acetonitrile ${ }^{12}$ with potassium tert-butoxide and methyl iodide, followed by reaction of the methylated nitrile with phenyllithium to obtain the corresponding ketone. Oximation of this yields oxime 12a. A cetophenone sensitized irradiation of 12a affords no dihydroisoxazole and only the ADPM process takes place affording cyclopropane 13a in 20\% yield. The same preferencefor AD PM reactivity is also shown for the ketohydrazone derivative 12b that affords 13b efficiently in 68% yield. The aldehyde derivative

12a $\mathrm{R}=\mathrm{Ph}, \mathrm{X}=\mathrm{OH}$ 12b $R=M_{e}, X=$ NHTs 12c $R=H, X=$ NHTs

14

13a $\mathrm{R}=\mathrm{Ph}, \mathrm{X}=\mathrm{OH}$
13b $R=M e, X=N H T s$
13c $R=H, X=$ NHTs

15

12c also undergoes the ADPM affording 13c. The ADPM rearrangement of the keto derivatives $\mathbf{1 2 a}$ and $\mathbf{1 2 b}$ was totally unexpected since in our experience related β, γ-unsaturated keto derivatives are unreactive by this mode. The conversion of 12a into 13a is the first example of an ADPM rearrangement of a phenyl ketone derivative. There is no evidence in the photoreactions of 12a and 12b for SET involvement analogous to that described earlier. H owever, 12c, in addition to the cyclopropane 13c, also gives a heterocyclic compound formed in 9% yield. A nalysis of the spectroscopic data identifies this as the hexahydrophenanthroline 14. We propose that this compound is formed by an SET process to yield a zwitterion such as 15 , within which cyclization affords the hexahydrophenanthroline 14. The formation of $\mathbf{1 4}$ containing a six-membered ring was surprising in the light of our previous results. The usual cyclization modefollowed within thezwitterionic biradical precursors involved an exo attack with the exclusive formation of a fivemembered ring. ${ }^{5}$ Cyclization of the zwitterionic biradical 15 involves an endo ring closure. Such a change in the cyclization mode could be the result of the structural constraints of the dihydronaphthalene moiety.
The above results demonstrate that acyclic β, γ-unsaturated ketoximes 3a-d undergo cyclization to dihydroisoxazoles on triplet-sensitized irradiation. Similarly tosylhydrazones 8a-b, benzoylhydrazone 8c and acetylhydrazone 8d from acyclic β, γ-unsaturated carbonyl compounds yield dihydropyrazoles 9 under analogous reaction conditions. Both reactions are thought to proceed via an intramolecular SET mechanism taking place from the alkene moiety to the hydroxyimino group, in the case of the oximes, or to the acetyl, the benzoyl or the tosyl groups, in the case of the hydrazone derivatives. This interpretation gives justification to the dependency of the efficiency of the reaction on the nature of the substituent on the terminal nitrogen. Thus, in qualitative terms, the efficiency increases from acetyl to benzoyl to tosyl in an order that it is coincident with the electron-accepting capacities of these groups. When the efficiency of the SET process diminishes the ADPM rearrangement competes with the cyclization. This situation is observed in the aldehyde derivatives $\mathbf{3 d}, \mathbf{3 e}, \mathbf{8 b}, \mathbf{8 c}$ and $\mathbf{8 d}$. H owever, when the alkene moiety is part of a dihydronaphthalene unit, as in compounds $\mathbf{1 2}$, the reactivity observed is entirely different. In this instance the predominant reaction path for both β, γ unsaturated oximes and hydrazone derivatives is the ADPM rearrangement regardless of whether the precursor carbonyl is an aldehyde or a ketone. In one case only ' $\mathbf{1 2 c}$ ' the formation of the phenanthroline $\mathbf{1 4}$, resulting from an endo cyclization, was observed as a very minor product, in addition to the cyclopropyl derivative 13 c resulting from the A DPM rearrangement. The reactivity observed for the dihydronaphthalene derivatives could be due to the particular characteristics of the $\pi-\pi^{*}$ triplet excited state of this chromophore, as have been demonstrated by Caldwell et al. ${ }^{13}$ The unusual short life time of the excited state in this instance was interpreted as a result of the planarity of the excited double bond. This factor could be responsiblefor the absence of cyclizations and also for the efficient ADPM rearrangement of these systems. H owever it cannot be ruled out that some other undetermined structural features present in these systems could also account for the observed reactivity. Our results show that compounds that were previously considered of little synthetic utility, such as β, γ-unsaturated oximes and hydrazone derivatives, can undergo novel and synthetically useful photochemical reactions, namely: A DPM rearrangement and/or cyclizations to different types of heterocycles depending on the substitution pattern present in the β, γ-unsaturated system.

Experimental

M elting points were determined on a Buchi 530D apparatus in open capillaries and are uncorrected. IR spectra were recorded
on a Perkin-Elmer 781 spectrophotometer as liquid films, unless otherwise stated and band positions are reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. NM R spectra were run at the Servicio de RMN de la U niversidad Complutense de M adrid. ${ }^{1} \mathrm{H}$ N M R spectra: Varian VXR-300S (300 MHz) and Bruker AC-250F (250 MHz), CDCl_{3} as solvent, TM S as internal standard and coupling constants J are given in Hz. ${ }^{13} \mathrm{C}$ N M R spectra: Varian VXR-300S (75 M Hz) and Bruker AC-250F (62 M Hz), $\mathrm{CDCl}_{3}(\delta 77.0$) as internal standard. UV-VIS spectra were recorded for solutions in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ using a Perkin Lambda 3B spectrophotometer. M ass spectra were run at the Chemistry D epartment, U niversity of Dundee using a VG 11-250J mass spectrometer. Combustion analyses were carried out by the Servicio de M icroanálisis de la Universidad Complutense de M adrid. Column chromatography was performed using silica gel 60 ($40-63 \mathrm{~mm}$) (M erck). Commercially available starting materials and reagents were purchased from the Aldrich Chemical Co. Ether refers to diethyl ether.
2,2-D imethyl-4-phenylbut-3-enal oxime 3d, ${ }^{7}$ 2,2-dimethyl-4,4-diphenylbut-3-enal oxime $3{ }^{1},{ }^{1}$ 2,2-dimethyl-4,4-diphenyl-but-3-enal benzoylhydrazone $8 \mathbf{c}^{14}$ and 2,2-dimethyl-4,4-diphen-ylbut-3-enal acetylhydrazone $8{ }^{14}$ were prepared as previously described.

Synthesis of 2-methyl-2-(2-phenylvinyl)cycloheptanone

A solution of butyllithium (solution $1.6 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in hexane; $36.5 \mathrm{~cm}^{3}, 0.06 \mathrm{~mol}$) was slowly added dropwise to a solution of benzyl(triphenyl)phosphonium chloride ($22.5 \mathrm{~g}, 0.06 \mathrm{~mol}$) in anhydrous THF ($100 \mathrm{~cm}^{3}$), at $0^{\circ} \mathrm{C}$ under argon. Then, the mixture was refluxed for 1 h . A fter cooling, the red reaction mixture was treated with a solution of 1-methyl-2-oxocycloheptanecarbaldehyde ${ }^{11}(6 \mathrm{~g}, 0.04 \mathrm{~mol})$ in THF $\left(50 \mathrm{~cm}^{3}\right)$, added at room temperature. The mixture was stirred for 12 h , hydrolysed with saturated aqueous ammonium chloride and extracted with ether. The extract was dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$, filtered and evaporated to dryness. Flash chromatography of the crude product using hexane-ether ($8: 2$) as eluent gave a $1: 1$ mixture of $Z: E$ isomers of the title compound as a yellow oil ($7.1 \mathrm{~g}, 80 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1700$ (CO); $\delta_{\mathrm{H}}(250 \mathrm{M} \mathrm{Hz}) 1.0$ ($1.5 \mathrm{H}, \mathrm{s}, \mathrm{M}$ e of E isomer), $1.1(1.5 \mathrm{H}, \mathrm{s}$, M e of Z isomer), 1.2-2.5 ($10 \mathrm{H}, \mathrm{m}, 5 \mathrm{CH}_{2}$), $5.4(0.5 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.4$, $\mathrm{PhCH}=\mathrm{CH}$ of Z isomer), $6.0,6.2(1 \mathrm{H}, \mathrm{AB}, \mathrm{J} 16.5, \mathrm{PhCH}=\mathrm{CH}$ of E isomer), $6.3(0.5 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.4, \mathrm{PhCH}=\mathrm{CH}$ of Z isomer) and 6.8-7.5 ($5 \mathrm{H}, \mathrm{m}$, aryl H); $\delta_{\mathrm{c}}(75 \mathrm{MHz}) 23.7(\mathrm{M} \mathrm{e}), 24.2(\mathrm{Me})$, 24.5, 24.7, 25.9, 26.7, 29.9, 30.7, 37.2, 40.5, 40.8, $40.9\left(\mathrm{CH}_{2}\right)$, 53.6 (quaternary C of E isomer), 53.9 (quaternary C of Z isomer), 126.0-136.8 (aryl and vinyl C), 214.2 ($\mathrm{C}=0$ of E isomer) and 214.4 ($\mathrm{C}=0$ of Z isomer); $\mathrm{m} / \mathrm{z} 228$ ($\mathrm{M}^{+}, 100 \%$), 200 (8), 185 (25), 157 (67), 143 (95), 129 (76), 109 (20), 91 (36), 77 (14) and 67 (13) (Found: C, 84.2; H , 8.8. $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}$ requires $\mathrm{C}, 84.22 ; \mathrm{H}$, 8.78\%).

Synthesis of 2-methyl-2-(2-phenylvinyl)cyclopentanone

A solution of benzyl(triphenyl) phosphonium chloride (14.2 g , 37 mmol) in 1,2-dimethoxyethane ($25 \mathrm{~cm}^{3}$) was added dropwise to a stirred suspension of NaH (60% dispersion; $1.5 \mathrm{~g}, 0.03 \mathrm{~mol}$) in the same solvent ($15 \mathrm{~cm}^{3}$). Then 1-methyl-2-oxocyclopentanecarbaldehyde ${ }^{11}(4 \mathrm{~g}, 32 \mathrm{mmol})$ was added slowly to the mixture, the temperature of which was kept $<35^{\circ} \mathrm{C}$. The mixture was stirred for 4 h at room temperature when the deposition of a thick gelatinous precipitate indicated completion of the reaction. The mixture was poured into water and extracted with chloroform. The extract was dried ($\mathrm{M} \mathrm{gSO}_{4}$), filtered and concentrated to dryness. Flash chromatography of the residue using hexane-ether ($8: 2$) as eluent gave a $1: 1$ mixture of $Z: E$ isomers of the title compound ($4.24 \mathrm{~g}, 66 \%$) as a yellow oil; $v_{\text {max }} /$ $\mathrm{cm}^{-1} 1720 ; \delta_{\mathrm{H}}(250 \mathrm{M} \mathrm{Hz}) 1.1$ ($1.5 \mathrm{H}, \mathrm{s}, \mathrm{M}$ e of E isomer), 1.2 (1.5 $\mathrm{H}, \mathrm{s}, \mathrm{M}$ e of Z isomer), 1.1-2.3 ($6 \mathrm{H}, \mathrm{m}, 3 \mathrm{CH}_{2}$), $5.8(0.5 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 12.4, $\mathrm{PhCH}=\mathrm{CH}$ of Z isomer) $6.1,6.3(2 \mathrm{H}, \mathrm{AB}, \mathrm{J} 16.5$, $\mathrm{PhCH}=\mathrm{CH}$ of E isomer), $6.5(0.5 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.4, \mathrm{PhCH}=\mathrm{CH}$ of Z isomer), 7.1-7.8 ($5 \mathrm{H}, \mathrm{m}$, aryl H); $\delta_{\mathrm{c}}(62 \mathrm{M} \mathrm{Hz}$), 23.0 (M e of E
isomer), 23.7 (Me of Z isomer), 18.8, 18.9, 36.7, 36.8, 37.3 $\left(\mathrm{CH}_{2}\right), 50.8$ (quaternary C of Z isomer), 51.4 (quaternary C of E isomer), 126.1-137.9 (aryl and vinyl C), 220.1 (CO of E isomer) and 221.0 (CO of Z isomer).

Synthesis of 2-(3,4-dihydro-2-naphthyl)-2-methyl-1-phenyl-propan-1-one

2-(3,4-D ihydro-2-naphthyl)-2-methylpropanonitrile. A solution of 2-(3,4-dihydro-2-naphthyl)acetonitrile ${ }^{12}$ ($1.54 \mathrm{~g}, 9.1$ mmol) and methyl iodide ($7.65 \mathrm{~g}, 53 \mathrm{mmol}$) in anhydrous ether $\left(30 \mathrm{~cm}^{3}\right)$ was added to a suspension of potassium tert-butoxide ($3.95 \mathrm{~g}, 35 \mathrm{mmol}$) in ether $\left(40 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ under nitrogen. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and then at room temperature for an additional 1 h . The solution was then quenched with water and extracted with ether. The extract was washed successively with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, aqueous NaCl and water and then dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$, filtered and evaporated to dryness to yield the title compound ($1.72 \mathrm{~g}, 96 \%$) as an oil which was used in the next step without further purification; $v_{\text {max }} / \mathrm{cm}^{-1}$ $2220(\mathrm{CN}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.5(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{Me}), 2.3\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $2.7\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 6.5(1 \mathrm{H}, \mathrm{s}$, vinyl H$)$ and 7.0-7.1 ($4 \mathrm{H}, \mathrm{m}$, aryl H); $\delta_{\mathrm{c}}(75 \mathrm{M} \mathrm{Hz}) 23.9\left(\mathrm{CH}_{2}\right), 26.0(2 \mathrm{M} \mathrm{e}), 28.3\left(\mathrm{CH}_{2}\right), 37.9$ (quaternary C), 123.1 (vinyl C), 123.9 (CN) and 126.7-139.4 (aryl and vinyl C); m/z 197 ($\mathrm{M}^{+}, 42 \%$), 182 (100) and 129 (45) (Found: M^{+}, 197.1199. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}$ requires M, 197.1201).
A solution of the above propanonitrile ($850 \mathrm{mg}, 4.31 \mathrm{mmol}$) in anhydrous ether ($9 \mathrm{~cm}^{3}$) was added slowly dropwise to a solution of phenyllithium (solution $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in hexane; $4.4 \mathrm{~cm}^{3}$, $8.8 \mathrm{mmol})$ in ether $\left(9 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h and then at room temperature for an additional 1 h . A solution of $\mathrm{H}_{2} \mathrm{SO}_{4}\left(6 \mathrm{~mol} \mathrm{dm}^{-3}\right.$; 7 cm^{3}) in dioxane ($12 \mathrm{~cm}^{3}$) was added to the mixture which was then heated to $50-60^{\circ} \mathrm{C}$ for 2 h . The organic phase was separated and the aqueous phase was neutralized with aqueous $\mathrm{NaOH}(10 \%)$. The aqueous phase was extracted with ether and the combined organic extracts were dried $\left(\mathrm{M} \mathrm{GSO}_{4}\right)$, filtered and evaporated to dryness. The residue was purified by flash chromatography using hexane-ether (99:1) as eluent to yield the title compound ($710 \mathrm{mg}, 60 \%$) as an oil; $v_{\text {max }} / \mathrm{cm}^{-1} 1680$ (CO); $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.4(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{M} \mathrm{e}), 2.1\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.6(2$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 6.6(1 \mathrm{H}, \mathrm{s}$, vinyl H), $7.0-7.3(7 \mathrm{H}, \mathrm{m}$, aryl H) and $8.0\left(2 \mathrm{H}, \mathrm{m}\right.$, aryl H); $\delta_{\mathrm{c}}(75 \mathrm{M} \mathrm{Hz}) 25.2(2 \mathrm{M} \mathrm{e}), 25.4,28.1\left(\mathrm{CH}_{2}\right)$, 52.7 (quaternary C), 121.3 (vinyl C), 126.1-136.7 (aryl C), 145.3 (vinyl C) and 203.8 (CO); m/z $276\left(\mathrm{M}^{+}, 3 \%\right), 171$ (100) and 77 (6) (Found: $\mathrm{M}^{+}, 276.1514 . \mathrm{C}_{20} \mathrm{H}_{20} 0$ requires $\mathrm{M}, 276.1509$.)

Standard method for the synthesis of oximes

The corresponding aldehyde, hydroxylamine hydrochloride and pyridine were refluxed in EtOH ($50 \mathrm{~cm}^{3}$) for $1-6 \mathrm{~h}$. The aldehyde/hydroxylamine/pyridine ratio was 1:1.2:1.2 for all the experiments. The solvent was evaporated and the crude product was dissolved in ether, washed with 10% aqueous HCl , water and brine. The oximes were isolated and purified by flash chromatography using hexane-ether as eluent.

2-M ethyl-2-(2-phenylvinyl)cyclopentanone oxime 4a. From 2-methyl-2-(2-phenylvinyl)cyclopentanone ($1.2 \mathrm{~g}, 6 \mathrm{mmol}$) a 3:2 mixture of Z : E isomers of the oily oxime $4 \mathrm{a}(0.98 \mathrm{~g}, 76 \%)$ was obtained; $v_{\text {max }} / \mathrm{cm}^{-1} 3250(\mathrm{OH})$ and $1615(\mathrm{C}=\mathrm{N}) ; \lambda_{\text {max }} / \mathrm{nm} 247$ $\left(\varepsilon 8100 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.2(1.8 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}$ of Z isomer), $1.4\left(1.2 \mathrm{H}, \mathrm{s}, \mathrm{M}\right.$ e of E isomer), 1.6-2.6($6 \mathrm{H}, \mathrm{m}, 3 \mathrm{CH}_{2}$), 5.8 ($0.6 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 12.3, $\mathrm{PhCH}=\mathrm{CH}$ of Z isomer), 6.3, 6.4 (0.8 H , $\mathrm{AB}, \mathrm{J} 16.3, \mathrm{PhCH}=\mathrm{CH}$ of E isomer), $6.5(0.6 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.3$, $\mathrm{PhCH}=\mathrm{CH}$ of Z isomer), 7.1-7.3 ($5 \mathrm{H}, \mathrm{m}$, aryl H), $9.7(0.6 \mathrm{H}, \mathrm{br}$ s, OH of Z isomer) and $9.8\left(0.4 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}\right.$ of E isomer); δ_{c} (75 $\mathrm{M} \mathrm{Hz}) 24.3$ (M e of E isomer), 26.0 (M e of Z isomer), 20.6, 20.7, 26.3, 26.8, 39.6, $39.7\left(\mathrm{CH}_{2}\right), 47.8$ (quaternary C of Z isomer), 48.5 (quaternary C of E isomer), $126.0-129.2,135.1,137.0$, 137.2, 138.0 (aryl and vinyl C), 169.2 ($\mathrm{C}=\mathrm{N}$ of E isomer) and 170.5 ($\mathrm{C}=\mathrm{N}$ of Z isomer); m/z 215 ($\mathrm{M}^{+}, 46 \%$), 198 (100), 170 (48), 113 (35) and 91 (60) (Found: $\mathrm{M}^{+}, 215.1304 . \mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}$ requires M, 215.1306).

2-M ethyl-2-(2-phenylvinyl)cycloheptanone oxime 4c. From 2-methyl-2-(2-phenylvinyl)cycloheptanone ($2.5 \mathrm{~g}, 11 \mathrm{mmol}$), the oxime 4 c ($2.4 \mathrm{~g}, 90 \%$) was obtained as a white solid, consisting of a $1: 1$ mixture of $Z: E$ isomers, $\mathrm{mp} 75-77^{\circ} \mathrm{C}$ (from hexane); $v_{\text {max }} / \mathrm{cm}^{-1} 3250(\mathrm{OH}) ; \lambda_{\text {max }} / \mathrm{nm} 249$ (1200); $\delta_{\mathrm{H}}(250 \mathrm{M} \mathrm{Hz}) 1.1$ (1.5 $\mathrm{H}, \mathrm{s}, \mathrm{M}$ e of Z isomer), 1.2 ($1.5 \mathrm{H}, \mathrm{s}, \mathrm{M}$ e of E isomer), 1.2-1.7 (8 $\left.\mathrm{H}, \mathrm{m}, 4 \mathrm{CH}_{2}\right), 2.1\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of Z isomer $), 2.7\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of E isomer), 5.6 ($0.5 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.5, \mathrm{PhCH}=\mathrm{CH}$ of Z isomer), 6.1, 6.2 ($1 \mathrm{H}, \mathrm{AB}, \mathrm{J} 16.3, \mathrm{PhCH}=\mathrm{CH}$ of E isomer), $6.5(0.5 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 12.5, $\mathrm{PhCH}=\mathrm{CH}$ of Z isomer), $7.0-7.3(5 \mathrm{H}, \mathrm{m}$, aryl H)) 9.7 (0.5 $\mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$ of Z isomer) and $10.1(0.5 \mathrm{H}$, br s, OH of E isomer); $\delta_{\mathrm{c}}\left(75 \mathrm{M} \mathrm{Hz}\right.$) 23.3, 23.6, $24.5\left(\mathrm{CH}_{2}\right), 24.8$ (M e), 25.2 $\left(\mathrm{CH}_{2}\right), 25.4(\mathrm{M} \mathrm{e}), 25.6,25.9,30.3,30.7,39.6,42.6\left(\mathrm{CH}_{2}\right), 45.9$ (quaternary C of Z isomer), 46.0 (quaternary C of E isomer), 126.0-128.9, 136.5, 137.0, 137.2, 138.0 (aryl and vinyl C), 164.8 ($\mathrm{C}=\mathrm{N}$ of Z isomer) and 165.5 ($\mathrm{C}=\mathrm{N}$ of E isomer); $\mathrm{m} / \mathrm{z} 243$ (M^{+}, 74), 228 (91), 200 (100), 186 (29), 143 (30), 129 (48), 115 (28), 91 (60), 77 (25) and 767 (23) (Found: C, 79.0; H, 8.6; N, 5.6. $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}$ requires $\mathrm{C}, 79.03 ; \mathrm{H}, 8.64 ; \mathrm{N}, 5.76 \%$).
(E)-2,2-dimethyl-1,4-diphenylbut-3-en-1-one oxime 3c. From (E)-2,2-dimethyl-1,4-diphenylbut-3-en-1-one ${ }^{8} \quad(1.47 \mathrm{~g}, 5.9$ $\mathrm{mmol})$ the oxime $3 \mathrm{c}(0.68 \mathrm{~g}, 44 \%)$ was obtained as a white solid, $\mathrm{mp} 151-153^{\circ} \mathrm{C}$ (from hexane); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3260(\mathrm{OH}) ; \lambda_{\text {max }} /$ nm 254 (18000); $\delta_{\text {H }}(250 \mathrm{M} \mathrm{Hz}) 1.3$ ($6 \mathrm{H}, \mathrm{s}, 2 \mathrm{M} \mathrm{e}$), 6.2, 6.3 (2 H , A B, J 16.3 , vinyl H), 7.1-7.4 ($10 \mathrm{H}, \mathrm{m}$, aryl H) and $7.8(1 \mathrm{H}$, br s, OH); $\delta_{\mathrm{c}}(62 \mathrm{M} \mathrm{Hz}) 25.9$ (2M e), 43.0 (quaternary C), 126.4137.3 (aryl and vinyl C) and 164.8 ($\mathrm{C}=\mathrm{N}$); 265 ($\mathrm{M}^{+}, 100 \%$), 250 (38), 248 (63), 145 (33), 131 (37) and 91 (36) (Found: C, 81.3; H, 7.3; $\mathrm{N}, 5.3 . \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}$ requires $\mathrm{C}, 81.51 ; \mathrm{H}, 7.17$; $\mathrm{N}, 5.28 \%$).

2-(3,4-D ihydro-2-naphthyl)-2-methyl-1-phenylpropanone
oxime 12a. F rom 2-(3,4-dihydro-2-naphthyl)-2-methyl-1-phenylpropanone ($310 \mathrm{mg}, 1.12 \mathrm{mmol}$), the oxime 12a ($209 \mathrm{mg}, 64 \%$) was obtained as a white solid, $\mathrm{mp} 195-197^{\circ} \mathrm{C}$ (from hexane); $v_{\text {max }} / \mathrm{cm}^{-1} 3400(\mathrm{OH}) ; \lambda_{\text {max }} / \mathrm{nm} 274$ (18000); $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 1.3$ (6 $\mathrm{H}, \mathrm{s}, 2 \mathrm{Me}$), $1.5(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.4\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.8(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 6.2(1 \mathrm{H}, \mathrm{s}$, vinyl H$)$ and $6.9-7.3\left(9 \mathrm{H}, \mathrm{m}\right.$, aryl H); $\delta_{\mathrm{c}}(75$ $\mathrm{M} \mathrm{Hz}) 24.3\left(\mathrm{CH}_{2}\right), 25.1(2 \mathrm{M} \mathrm{e}), 28.7\left(\mathrm{CH}_{2}\right), 45.7$ (quaternary C), 122.6-132.7, 134.5, 134.7, 144.1 (aryl and vinyl C) and 163.9 (C=N); m/z 291 (${ }^{+}$, 100\%), 274 (85), 234 (51), 171 (49), 151 (56), 129 (41) and 113 (41) (Found: $\mathrm{M}^{+}, 291.1627 . \mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}$ requires M, 291.1618) (Found: C, 82.6; H, 7.5; N, 4.9. $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}$ requires $\left.\mathrm{C}, 82.44 ; \mathrm{H}, 7.27 ; \mathrm{N}, 4.81 \%\right)$.

Synthesis of 3,3-dimethyl-5,5-diphenylpent-4-en-2-one tosylhydrazone 8a

3,3-D imethyl-5,5-diphenylpent-4-en-2-one ${ }^{15}$ ($0.3 \mathrm{~g}, 1.1 \mathrm{mmol}$), toluene-p-sulfonylhydrazide ($0.23 \mathrm{~g}, 1.2 \mathrm{mmol}$) and zinc chloride (ca. 20 mg) were refluxed in toluene ($60 \mathrm{~cm}^{3}$) for 8 h , with azeotropic removal of water by a D ean and Stark trap. The mixture was then cooled, the catalyst was filtered off and the solution evaporated to dryness. Flash chromatography of the residue using hexane-ethyl acetate ($8: 2$) as eluent afforded the desired tosylhydrazone 8 a ($0.37 \mathrm{~g}, 78 \%$) as a white solid, mp $176-177^{\circ} \mathrm{C}$ (from EtOH); $v_{\text {max }} / \mathrm{cm}^{-1} 3090(\mathrm{NH}), 1630(\mathrm{C}=\mathrm{N}$); $\lambda_{\text {max }} / \mathrm{nm} 230(24000) ; \delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 1.2(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{M} \mathrm{e}), 1.3(3 \mathrm{H}, \mathrm{s}$, MeCN), 2.4 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), 5.9 (1 H , s, vinyl H) and 6.8-7.8 (15 H, m, aryl H and NH); $\delta_{\mathrm{c}}(75 \mathrm{M} \mathrm{Hz}) 13.7(\mathrm{M} \mathrm{eCN}), 21.5(\mathrm{ArMe})$, 27.8 (2M e), 45.1 (quaternary C), 127.0-143.7 (aryl and vinyl C) and $161.8(\mathrm{C}=\mathrm{N}) ; \mathrm{m} / \mathrm{z} 432\left(\mathrm{M}^{+}, 1\right)$, 265 (100), 167 (19), 155 (38) and 91 (65) (Found: C, 72.2; H, 6.34; N, 6.5; S, 7.0. $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 72.23 ; \mathrm{H}, 6.48 ; \mathrm{N}, 6.48 ; \mathrm{S}, 7.41 \%$).

Synthesis of 2,2-dimethyl-4,4-diphenylbut-3-enal tosylhydrazone 8b

2,2-D imethyl-4,4-diphenylbut-3-enal ${ }^{7}(0.8 \mathrm{~g}, 3.2 \mathrm{mmol})$ and toluene-p-sulfonylhydrazide ($0.6 \mathrm{~g}, 3.2 \mathrm{mmol}$) were dissolved in methylene dichloride ($50 \mathrm{~cm}^{3}$) and the solution was stirred at room temperature in the presence of $\mathrm{M} \mathrm{gSO}_{4}$ for 4 h . Conventional work-up, followed by flash chromatography using hexane-ether $(7: 3)$ as eluent afforded the desired tosylhydra-
zone 8b ($0.8 \mathrm{~g}, 67 \%$) as a white solid, $\mathrm{mp} 103-105^{\circ} \mathrm{C}$ (from EtOH); $v_{\text {max }} / \mathrm{cm}^{-1} 3190(\mathrm{NH})$ and $1640(\mathrm{C}=\mathrm{N}) ; \lambda_{\text {max }} / \mathrm{nm} 215$ (6300); $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 1.2$ ($6 \mathrm{H}, \mathrm{s}, 2 \mathrm{M} \mathrm{e}$), $2.4(3 \mathrm{H}, \mathrm{s}, \mathrm{ArM} \mathrm{e}), 6.0$ ($1 \mathrm{H}, \mathrm{s}$, vinyl H) , $6.6(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N})$ and 6.9-7.9 ($15 \mathrm{H}, \mathrm{m}$, aryl H and NH); $\delta_{\mathbf{c}}(75 \mathrm{M} \mathrm{Hz}) 21.3$ (ArMe), 26.9 (2 M e), 40.6 (quaternary C), 126.6-143.6 (aryl and vinyl C) and $157.5(\mathrm{C}=\mathrm{N}$); m / z 418 ($\mathrm{M}^{+}, 13$), 263 (42), 234 (51), 219 (91), 167 (100), 146 (63), 91 (64), 77 (16) and 65 (26) (Found: C, 71.4; H, 6.3; N, 6.7; S, 7.9. $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $\left.\mathrm{C}, 71.78 ; \mathrm{H}, 6.21 ; \mathrm{N}, 6.69 ; \mathrm{S}, 7.65 \%\right)$.

Synthesis of 2-(3,4-dihydro-2-naphthyl)-3-methylbutan-2-one tosylhydrazone 12b

The same procedure used for the synthesis of 8 a was followed in this case. Thus, 2-(3,4-dihydro-2-naphthyl)-3-methylbutan-2one ${ }^{16}$ ($400 \mathrm{mg}, 1.87 \mathrm{mmol}$) and toluene -p -sulfonylhydrazide ($382 \mathrm{mg}, 2.05 \mathrm{mmol}$) gave, after flash chromatography using hexane-ethyl acetate ($9: 1$) as eluent, the desired tosylhydrazone $\mathbf{1 2 b}$ as a white solid ($0.41 \mathrm{~g}, 57 \%$), mp $173-174{ }^{\circ} \mathrm{C}$ (from EtOH); $v_{\text {max }} / \mathrm{cm}^{-1} 3210(\mathrm{NH})$ and $1600(\mathrm{C}=\mathrm{N}) ; \lambda_{\text {max }} / \mathrm{nm} 273$ (14000) and $265(14400) ; \delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 1.2(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{M} \mathrm{e}), 1.6(3 \mathrm{H}, \mathrm{s}$, $\mathrm{MeCN}), 1.7\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $2.4(3 \mathrm{H}, \mathrm{s}, \mathrm{ArM} \mathrm{e}), 2.5(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 6.2(1 \mathrm{H}, \mathrm{s}$, vinyl H$), 7.0(4 \mathrm{H}, \mathrm{m}$, aryl H), $7.2(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.3, aryl H), $7.6(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and $7.8(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3$, aryl H); $\delta_{\mathrm{c}}(75 \mathrm{M} \mathrm{Hz}) 12.4(\mathrm{M} \mathrm{eCN}$), $21.5(\mathrm{ArMe}$), 23.77 (2 M e), 23.81 $\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CH}_{2}\right), 47.6$ (quaternary C), 121.9 (vinyl C), 125.6145.0 (aryl and vinyl C) and 161.0 (C=N); m/z 382 (M ${ }^{+}, 33 \%$), 227 (25), 198 (36) and 68 (100) (Found: C, 68.8; H , 6.7; N, 7.4. $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 69.06 ; \mathrm{H}, 6.85 ; \mathrm{N}, 7.32 \%$).

Synthesis of 2-(3,4-dihydro-2-naphthyl)-2-methylpropanal tosylhydrazone 12c

The same procedure used for the synthesis of $\mathbf{8 b}$ was followed in this case. Thus, from 2-(3,4-dihydro-2-naphthyl)-2-methylpropanal ${ }^{16}(0.56 \mathrm{~g}, 2.8 \mathrm{mmol})$ the desired tosylhydrazone $\mathbf{1 2 c}$ was obtained as a white solid ($760 \mathrm{mg}, 73 \%$), $\mathrm{mp} 177-178^{\circ} \mathrm{C}$ (from EtOH); $v_{\text {max }} / \mathrm{cm}^{-1} 3180(\mathrm{NH})$ and $1610(\mathrm{C}=\mathrm{N}) ; \lambda_{\text {max }} / \mathrm{nm}$ 229 (24200); $\delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.2(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{M} \mathrm{e}), 1.9(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.1$, $\left.\mathrm{CH}_{2}\right), 2.4(3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}), 2.5\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.6, \mathrm{CH}_{2}\right), 6.1(1 \mathrm{H}, \mathrm{s}$, vinyl H), $6.9(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N}), 6.7-7.4(6 \mathrm{H}, \mathrm{m}$, aryl H $)$ and $7.8(2$ $\mathrm{H}, \mathrm{J} 8.3$, aryl H); $\delta_{\mathrm{c}}(63 \mathrm{MHz}$) 21.8 (ArMe), 23.7 ($2 \mathrm{M} \mathrm{e)} 23.9$, $\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{2}\right), 43.5$ (quaternary C), 122.4 (vinyl C), 126.2144.3 (aryl and vinyl C) and 157.1 ($C=N$); m/z $354\left(\mathrm{M}^{+}-15\right.$, 0.7) and 91 (100) (Found: C, 68.1; $\mathrm{H}, 6.5 ; \mathrm{N}, 7.6 . \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires C, 68.45; H, 6.56; N, 7.60\%).

Preparative photolyses

The photolyses were carried out in an immersion-well apparatus with a Pyrex filter and a $400-\mathrm{W}$ medium-pressure Hg arc lamp. Solutions of the compounds and the sensitizer in anhydrous benzene or methylene dichloride ($420 \mathrm{~cm}^{3}$) were purged with argon for 1 h and irradiated under a positive pressure of argon for the times shown. A fter completion of the irradiation the solvent and the sensitizer were removed under reduced pressure and the products were separated by flash chromatography.

Acetophenone-sensitized irradiation of the oxime 3 e . This compound ($350 \mathrm{mg}, 1.32 \mathrm{mmol}$) and acetophenone (5.6 g) were irradiated in methylene dichloride for 1 h . A fter removal of the solvent and the sensitizer, flash chromatography using hexaneether (9:1) gave unchanged $\mathbf{3 e}$ (204 mg , 58\%), a 3:2 mixture of $\mathrm{Z}: \mathrm{E}$ isomers of the cyclopropyloxime 11a ($36 \mathrm{mg}, 10 \%$) as a white solid $\mathrm{mp} 145-46^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3250(\mathrm{OH})$ and 1650 (CH); $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 1.09$ ($1.2 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of E isomer), 1.11 (1.8 $\mathrm{H}, \mathrm{s}, \mathrm{M}$ e of Z isomer), 1.29 ($1.2 \mathrm{H}, \mathrm{s}, \mathrm{M}$ e of E isomer), 1.32 (1.8 $\mathrm{H}, \mathrm{s}, \mathrm{M}$ e of Z isomer), $2.4(0.4 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.8$, CH of E isomer), 2.9 ($0.6 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6, \mathrm{CH}$ of Z isomer), $6.4(0.6 \mathrm{H}, \mathrm{d}, \mathrm{CH}=\mathrm{N}$ of Z isomer) and 7.1-7.5 ($10.4 \mathrm{H}, \mathrm{m}$, aryl H and $\mathrm{CH}=\mathrm{N}$ of E isomer); $\delta_{\mathbf{c}}(75 \mathrm{M} \mathrm{Hz}) 20.4$ (Me of Z isomer), 20.6 (Me ef E isomer), 25.0 (M e of E isomer), 25.3 (M e of Z isomer), 28.1 ($\mathrm{CM} \mathrm{e}_{2}$ of E isomer), 28.5 ($\mathrm{CM} \mathrm{e}_{2}$ of Z isomer), 29.4 (CH of E isomer),
33.3 (CH of Z isomer), 46.6 (CPh_{2} of E isomer), 48.0 (CPh_{2} of Z isomer), 126.1-144.3 (aryl C), 151.0 (CN of E isomer) and 152.5 (CN of Z isomer). This compound was further characterized by transformation into the corresponding acetate. ${ }^{17}$ Further elution afforded the dihydroisoxazole $5 \mathrm{~d}(30 \mathrm{mg}, 8 \%)$ as an oil; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1610 ; \delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}), 0.9(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}), 1.0(3$ $\mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}$), 4.2 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.0, \mathrm{CHPh}_{2}$), 4.8 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.0$, $\mathrm{OCH}), 6.9(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N})$ and $7.0-7.4(10 \mathrm{H}, \mathrm{m}$, aryl H$) ; \delta_{\mathrm{c}}(75$ $\mathrm{M} \mathrm{Hz}) 19.4\left(\mathrm{M} \mathrm{e}\right.$), $24.9(\mathrm{M} \mathrm{e}), 51.2\left(\mathrm{CHPh}_{2}\right), 88.4$ (CHO), 126.6128.7 (aryl C) and 157.8 (CN); m/z $264\left(\mathrm{M}^{+}-1,1 \%\right), 167$ (100) and 165 (18) (Found: $\mathrm{M}^{+}-1,264.1392 . \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}$ requires M , 264.1384).

Acetophenone-sensitized irradiation of the oxime 4a. This compound ($296 \mathrm{mg}, 1.37 \mathrm{mmol}$) and acetophenone (2.7 g) in methylene dichloride were irradiated for 15 min . A fter removal of the solvent and the sensitizer, flash chromatography using hexane-ether ($9: 1$) gave unchanged $\mathbf{4 a}(220 \mathrm{mg}, 74 \%)$ and the dihydroisoxazole $6 \mathbf{a}\left(60 \mathrm{mg}, 20 \%\right.$) as a colourless oil; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) /$ $\mathrm{cm}^{-1} 1645(\mathrm{C}=\mathrm{N})$; $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 1.5(3 \mathrm{H}, \mathrm{s} \mathrm{M} \mathrm{e)}, \mathrm{1.6-2.4} \mathrm{(} 6 \mathrm{H}$, $\left.\mathrm{m}, 3 \mathrm{CH}_{2}\right), 4.0\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.7\right.$ and $\left.5.5, \mathrm{ABXCH} \mathrm{H}_{2}\right), 4.1(1 \mathrm{H}, \mathrm{dd}$ J 9.1 and $6.7, \mathrm{ABXCH})_{2}$, $4.2(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.1$ and $5.5, \mathrm{CH})$ and 7.0-7.3 ($5 \mathrm{H}, \mathrm{m}$, aryl H); $\delta_{\mathrm{c}}(75 \mathrm{M} \mathrm{Hz}) 18.2(\mathrm{M} \mathrm{e}$), 24.9, 31.2, 35.6 $\left(\mathrm{CH}_{2}\right), 52.5$ (quaternary C), 85.7 (CH), 126.5-129.7, 138.1 (aryl C) and 168.0 ($\mathrm{C}=\mathrm{N}$); m/z 215 ($\mathrm{M}^{+}, 45 \%$), 198 (100), 170 (47), 129 (67), 115 (34) and 91 (61) (Found: $\mathrm{M}^{+}, 215.1300 . \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}$ requires M, 215.1306).

Acetophenone-sensitized irradiation of the oxime 4c. This compound ($400 \mathrm{mg}, 1.6 \mathrm{mmol}$) and acetophenone (2 g), in methylene dichloride were irradiated for 22 min . A fter removal of the solvent and the sensitizer, flash chromatography using hexane-ether ($9: 1$) gave unchanged $4 \mathrm{c}(273 \mathrm{mg}, 68 \%)$ and the dihydroisoxazole 6 c ($47 \mathrm{mg}, 12 \%$) as a white solid, mp 118$120^{\circ} \mathrm{C}$ (from hexane); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1660(\mathrm{CN}) ; \delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz})$ 1.1 ($3 \mathrm{H}, \mathrm{s} \mathrm{M} \mathrm{e}$), 1.4-2.3 ($10 \mathrm{H}, \mathrm{m}, 5 \mathrm{CH}_{2}$), 2.7 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.3$ and 4.0, ABX CH 2), $\left.3.1(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.3 \text { and } 9.2, \mathrm{ABXCH})_{2}\right), 4.4$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.2$ and $4.0, \mathrm{CH}$) and 7.1-7.8 ($5 \mathrm{H}, \mathrm{m}$, aryl H); $\delta_{\mathrm{c}}(75$ M Hz) 19.2 (M e), 23.9, 25.7, 28.9, 31.3, 33.9, 35.6 (CH_{2}), 54.5 (quaternary C), $87.1(\mathrm{CH}$), 126.5-129.2, 133.5, 138.3 (aryl C) and $168.6(\mathrm{C}=\mathrm{N})$; m/z $243\left(\mathrm{M}^{+}, 1\right), 105(10), 91$ (11) and $84(100)$ (Found: C, 79.4; H, 8.6; N, 5.8. $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}$ requires $\mathrm{C}, 79.03 ; \mathrm{H}$, 8.74; N, 5.76\%).

A cetophenone-sensitized irradiation of the oxime 3 c . The Eoxime 3c ($350 \mathrm{mg}, 1.32 \mathrm{mmol}$) and acetophenone (2 g) were irradiated in methylene dichloride for 1 h . A fter removal of the solvent and the sensitizer, flash chromatography using hexaneether (95:5) gave the dihydroisoxazole $\mathbf{5 c}$ as a white solid (52 $\mathrm{mg}, 13 \%), \mathrm{mp} \mathrm{125-127}{ }^{\circ} \mathrm{C}$ (from hexane); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1610$ (CN); $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.2(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.3(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}), 2.8(1 \mathrm{H}$, dd, J 14.7 and $4.2, \mathrm{ABX} \mathrm{CH} 2$), $3.0(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.7$ and 9.1 $\mathrm{ABX} \mathrm{CH} 2), ~ 4.3(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.1$ and $4.2, \mathrm{CH}), 7.2-7.4(8 \mathrm{H}, \mathrm{m}$, aryl H) and $7.6\left(2 \mathrm{H}, \mathrm{m}\right.$, aryl H); $\delta_{\mathbf{c}}(75 \mathrm{M} \mathrm{Hz}) 19.5(\mathrm{Me}), 23.7$ (M e), $34.2\left(\mathrm{CH}_{2}\right), 51.0$ (quaternary C), $91.1(\mathrm{CH}), 126.4-129.5$ 137.6 (aryl C) and 165.5 ($\mathrm{C}=\mathrm{N}$) (Found: C, 81.8; H, 7.4; N, 5.6. $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}$ requires $\left.\mathrm{C}, 81.51 ; \mathrm{H}, 7.17 ; \mathrm{N}, 5.28 \%\right)$. Further elution gave the oxime $3 \mathrm{c}(251 \mathrm{mg}, 72 \%)$ as a $1: 1$ mixture of $Z: E$ isomer of the $\mathrm{C}=\mathrm{C}$ bond; $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 1.1(3 \mathrm{H}, \mathrm{s}, 2 \mathrm{M} \mathrm{e}$ of Z isomer), 1.3 ($3 \mathrm{H}, \mathrm{s}, 2 \mathrm{M} \mathrm{e}$ of E isomer), 5.5 ($0.5 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.6$ $\mathrm{PhCH}=\mathrm{CH}$ of Z isomer), $6.2,6.3(1 \mathrm{H}, \mathrm{AB}, \mathrm{J} 16.3, \mathrm{PhCH}=\mathrm{CH}$ of E isomer), $6.5(0.5 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.6, \mathrm{PhCH}=\mathrm{CH}$ of Z isomer), 7.0-7.3 ($10 \mathrm{H}, \mathrm{m}$, aryl H) and 7.8, $8.0\left(1 \mathrm{H}, \mathrm{br}, \mathrm{s}, \mathrm{OH}\right.$); $\delta_{\mathrm{c}}(75$ $\mathrm{M} \mathrm{Hz}) 25.9(\mathrm{M} \mathrm{e}), 27.5(\mathrm{M} \mathrm{e}), 42.8$ (quaternary C), 43.0 (quaternary C), 126.1-137.3 (aryl and vinyl C) and 161.8, 163.8 (CN).

Acetophenone-sensitized irradiation of the oxime 3d. The oxime 3 d ($312 \mathrm{mg}, 1.65 \mathrm{mmol}$) and acetophenone (2 g) were irradiated in methylene dichloride for 1 h . A fter removal of the solvent and the sensitizer, flash chromatography using hexaneether ($95: 5$) as eluent gave 3 d ($132 \mathrm{mg}, 42 \%$) as a $1: 1$ mixture of $\mathrm{Z}: \mathrm{E}$ isomers of the $\mathrm{C}=\mathrm{C}$ bond; $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.1,1.2(6 \mathrm{H}, \mathrm{s}$, $2 \mathrm{M} \mathrm{e}), 5.5(0.5 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.2, \mathrm{PhCH}=\mathrm{CH}$ of Z isomer), 6.1, 6.3 (1 $\mathrm{H}, \mathrm{AB}, \mathrm{J} 16.2$, vinyl H of E isomer), $6.5(0.5 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.2$,
$\mathrm{PhCH}=\mathrm{CH}$ of Z isomer), 7.0-7.5 ($5 \mathrm{H}, \mathrm{m}$, aryl H) and 8.2, 8.6 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$) and the cyclopropane 10 ($58 \mathrm{mg}, 19 \%$) as a white solid, $\mathrm{mp} 124-126^{\circ} \mathrm{C}$ (from hexane); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ $3100(\mathrm{OH})$ and $1610 ; \delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 0.9(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.3(3 \mathrm{H}, \mathrm{s}$, Me), 2.3 (1 H, d, J 5.5, CH), 2.5 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.5,5.5, \mathrm{CH}$), 6.6 (1 $\mathrm{H}, \mathrm{d}, \mathrm{J} 8.5, \mathrm{CH}=\mathrm{N}$) and 7.2-7.3 ($5 \mathrm{H}, \mathrm{m}$, aryl H); $\delta_{\mathrm{c}}(75 \mathrm{MHz})$ 21.6 (M e), 22.8 (M e), 29.5 (quaternary C), 36.1 (CH), 38.1 (CH), 126.2-128.8 (aryl C) and 152.3 (CN). This compound was further characterized by transformation into the corresponding acetate. ${ }^{7}$
A cetophenone-sensitized irradiation of the oxime 12a. This compound ($200 \mathrm{mg}, 0.69 \mathrm{mmol}$) and acetophenone (7.7 g) in methylene dichloride were irradiated for 20 min . A fter removal of the solvent and the sensitizer, flash chromatography of the residue using hexane-ether ($95: 5$) gave the cyclopropyl oxime 13a ($40 \mathrm{mg}, 20 \%$) as a white solid, $\mathrm{mp} 202-204{ }^{\circ} \mathrm{C}$ (from hexane); $v_{\text {max }} / \mathrm{cm}^{-1} 3300(\mathrm{OH})$ and $1610(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 0.8(3$ $\mathrm{H}, \mathrm{s}, \mathrm{Me}$), $1.1(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $1.5(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.7(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 2.3$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.6\left(1 \mathrm{H}, \mathrm{m}, 1 / 2 \mathrm{CH}_{2}\right), 3.0\left(1 \mathrm{H}, \mathrm{m}, 1 / 2 \mathrm{CH}_{2}\right)$ and 7.1-7.3 ($9 \mathrm{H}, \mathrm{m}$, aryl H); $\delta_{\mathrm{c}}(75 \mathrm{M} \mathrm{Hz}) 14.2(\mathrm{M} \mathrm{e}), 22.7(\mathrm{M} \mathrm{e}), 28.7$ $\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 30.4$ (quaternary C), $31.7(\mathrm{CH}$), 32.2 (quaternary C), 126.2-128.9 (aryl C) and 179.0 ($\mathrm{C}=\mathrm{N}$); m/z 274 $\left(\mathrm{M}^{+}-17,19\right), 232$ (64), 173 (100) and 145 (46) (Found: C, 82.3; $\mathrm{H}, 7.0 ; \mathrm{N}, 4.6 . \mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N} \mathrm{O}$ requires $\left.\mathrm{C}, 82.44 ; \mathrm{H}, 7.27 ; \mathrm{N}, 4.81 \%\right)$. F urther elution afforded unchanged 12a ($110 \mathrm{mg}, 55 \%$).
A cetophenone-sensitized irradiation of the tosylhydrazone 8a. This compound ($300 \mathrm{mg}, 0.69 \mathrm{mmol}$) and acetophenone (3 g) were irradiated in benzene for 50 min . A fter removal of the solvent and the sensitizer, flash chromatography of the residue using hexane-ether acetate ($8: 2$) gave unchanged 8 a (50 mg , 16%) and the dihydropyrazole 9 a ($225 \mathrm{mg}, 75 \%$) as a white solid, mp $125-126^{\circ} \mathrm{C}$ (from EtOH); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1620$ ($\mathrm{C}=\mathrm{N}$); $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 0.8(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.0(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}), 1.9(3 \mathrm{H}$, $\mathrm{s}, \mathrm{M} \mathrm{eCN}$), $2.3(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{eAr}), 3.9(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.0, \mathrm{CH}$ Ph 2), 5.0 (1 $\mathrm{H}, \mathrm{d}, \mathrm{J} 10.0, \mathrm{NCH}$) and 7.1-7.3 ($14 \mathrm{H}, \mathrm{m}, \operatorname{aryl} \mathrm{H}$); $\delta_{\mathrm{c}}(75 \mathrm{M} \mathrm{Hz})$ 12.2, 20.0, 21.4, 26.8 (M e), 52.7 ($\mathrm{CM} \mathrm{e}_{2}$), 53.5 (CPh_{2}), 68.5 (CHN), 126.1-143.5 (aryl C) and 170.0 (CN); m/z 433 (M ${ }^{+}+1,1 \%$), 265 (100), 176 (31), 165 (25), 155 (48), 91 (88), 65 (14) and 41 (11) (Found: C, 71.5; H, 6.7; N, 6.3. $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} .1 / 2 \mathrm{EtOH}$ requires $\mathrm{C}, 71.21 ; \mathrm{H}, 6.81 ; \mathrm{N}, 6.15 \%$)
A cetophenone-sensitized irradiation of the tosylhydrazone 8b. This compound ($496 \mathrm{mg}, 1.2 \mathrm{mmol}$) and acetophenone (15 g) were irradiated in benzene for 30 min . A fter removal of the solvent and the sensitizer, flash chromatography of the residue using hexane-ethyl acetate ($8: 2$) gave unchanged $\mathbf{8 b}$ (339 mg , 70%) and a mixture of the tosylhydrazone 11b and the dihydropyrazole 9 b (121 mg (27\%). This mixture was hydrolysed following the method described by Reese and co-workers. ${ }^{18}$ Thus, to an ice cooled solution of the mixture of $\mathbf{1 1 b}$ and $\mathbf{9 b}$ in MeOH $\left(20 \mathrm{~cm}^{3}\right)$, was added a solution of $\mathrm{H}_{2} \mathrm{O}_{2}\left(0.2 \mathrm{~cm}^{3}, 1.68 \mathrm{mmol}\right)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(55 \mathrm{mg}, 0.56 \mathrm{mmol})$ in water ($10 \mathrm{~cm}^{3}$). A fter the solution had been stirred for 6 h , it was adjusted to pH 8 with $\mathrm{H}_{3} \mathrm{PO}_{4}$ and extracted with methylene dichloride. The organic layer was dried $\left(\mathrm{M} \mathrm{SOO}_{4}\right)$, filtered and evaporated to dryness. Flash chromatography of the residue using hexane-ether (9:1) as eluent afforded 2,2-dimethyl-3,3-diphenylcyclopropanecarbaldehyde ${ }^{19}(20 \mathrm{mg}, 7 \%)$ and the dihydropyrazole 9 b (91 mg , 18%) as a white solid $\mathrm{mp} 122-124{ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1640$ ($\mathrm{C}=\mathrm{N}$); $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 0.8(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}), 1.0(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}), 2.3(3 \mathrm{H}, \mathrm{s}$, MeAr), $4.0\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.0, \mathrm{CHPh}_{2}\right), 4.8(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.0, \mathrm{NCH})$, $6.8(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N})$ and $7.0-8.0(14 \mathrm{H}, \mathrm{m}, \operatorname{aryl} \mathrm{H}) ; \delta_{\mathrm{c}}(75 \mathrm{M} \mathrm{Hz})$ 20.1 (M e), 21.8 (ArM e), 27.2 (M e), $52.2\left(\mathrm{CPh}_{2}\right)$, $53.4\left(\mathrm{CM} \mathrm{e}_{2}\right)$, 76.8 (CHN), 126.3-143.8 (aryl C) and 163.0 (CN); m/z 418 ($\mathrm{M}^{+}, 1 \%$), 251 (63), 167 (16), 165 (15), 155 (65) and 91 (100) (Found: C, 71.5; H, 6.2; N , 6.5; S, 7.9. $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires C , 71.78; H, 6.21; N , 6.69; S, 7.65\%),

Acetophenone-sensitized irradiation of the benzoylhydrazone 8 c . This compound ($850 \mathrm{mg}, 2.3 \mathrm{mmol}$) and acetophenone (30 g) in methylene dichloride were irradiated for 45 min . A fter removal of the solvent and the sensitizer, flash chromatography
of the residue using hexane-ethyl acetate (7:3) gave dihydropyrazole 9c as a white solid ($92 \mathrm{mg}, 11 \%$), mp 193-194 ${ }^{\circ} \mathrm{C}$ (from EtOH); $v_{\text {max }} / \mathrm{cm}^{-1} 3210(\mathrm{OH}), 1655(\mathrm{CO})$ and $1600(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz}) 1.0(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.2(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.2(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.0$, CHPh $)^{2}, 5.4(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.0, \mathrm{CH}-\mathrm{N}), 6.7(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N})$ and 7.5-7.0 ($15 \mathrm{H}, \mathrm{m}$, aryl H); $\delta_{\mathrm{c}}(63 \mathrm{M} \mathrm{Hz}$) 19.4, 27.0 (Me), 50.1 (quaternary C), $51.5\left(\mathrm{CHPh}_{2}\right)$, $65.8(\mathrm{CH}-\mathrm{N}$), 122.9-141.4 (aryl C), 158.1 ($C=N$) and 167.6 (CO); m/z 368 (${ }^{+}, 1 \%$), 201 (68), 167 (15), 165 (18), 105 (100) and 77 (53) (Found C, 81.8; H , 6.4; $\mathrm{N}, 7.7 . \mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 81.53 ; \mathrm{H}, 6.51 ; \mathrm{N}, 7.60 \%$). Further elution gave the benzoylhydrazone 8c ($527 \mathrm{mg}, 62 \%$) and cyclopropylbenzoylhydrazone $11 \mathrm{c}(184 \mathrm{mg}, 22 \%) .{ }^{14}$

A cetophenone-sensitized irradiation of the acetylhydrazone 8d. This compound ($268 \mathrm{mg}, 0.8 \mathrm{mmol}$) and acetophenone (12 g) in benzene were irradiated for 2 h . A fter removal of the solvent and the sensitizer, the crude photolysate was hydrolysed by adding to it a solution of sulfuric acid 10%; (aqueous solution: $20 \mathrm{~cm}^{3}$) in THF ($60 \mathrm{~cm}^{3}$). A fter being stirred for 12 h , the mixture was extracted with ether. The combined organic extracts were washed with saturated aqueous NaHCO_{3}, dried (MSO_{4}), filtered and evaporated to dryness. Flash chromatography of the residue using hexane as eluent gave 2,2 dimethyl-4,4-diphenyl-3-butenal ($55 \mathrm{mg}, 24 \%$), 2,2-dimethyl-3,3-diphenylcyclopropanecarbaldehyde ${ }^{19}$ ($155 \mathrm{mg}, 68 \%$) and dihydropyrazole 9d (4 mg, 1\%); $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 1.0(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}$), $1.1(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.8(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{eCO}), 4.0(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.0$, CH Ph $)_{2}$, $4.9(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.0, \mathrm{CH}-\mathrm{N})$ and $7.4-7.0(11 \mathrm{H}, \mathrm{m}$, aryl H and $\mathrm{CH}=\mathrm{N}$).

A cetophenone-sensitized irradiation of the tosylhydrazone 12b. This compound ($204 \mathrm{mg}, 0.53 \mathrm{mmol}$) and acetophenone (6 g) in methylene dichloride were irradiated for 15 min . A fter removal of the solvent and the sensitizer, flash chromatography of the residue using hexane-ether (8:2) gave the cyclopropyl tosylhydrazone 13b as a white solid ($141 \mathrm{mg}, 68 \%$), mp $187-189^{\circ} \mathrm{C}$ (from EtOH); $v_{\text {max }} / \mathrm{cm}^{-1} 3210(\mathrm{NH}), 1620(\mathrm{C}=\mathrm{N})$) $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz})$ $0.56(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 0.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}\right.$), $1.6\left(1 \mathrm{H}, \mathrm{m}, 1 / 2 \mathrm{CH}_{2}\right), 1.7(3$ $\mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{eCN}$), $1.8\left(1 \mathrm{H}, \mathrm{m}, 1 / 2 \mathrm{CH}_{2}\right), 2.1(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 2.25(1 \mathrm{H}$, $\mathrm{m}, \mathrm{I} / 2 \mathrm{CH}_{2}$), $2.28(3 \mathrm{H}, \mathrm{s}, \mathrm{MeAr})$, $2.5\left(1 \mathrm{H}, \mathrm{m}, \mathrm{l} / 2 \mathrm{CH}_{2}\right), 6.9$ (4 H, m, aryl H), $7.1(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3$, aryl H), $7.4(1 \mathrm{H}, \mathrm{br}$ s, NH) and 7.7 (2 H, d, J 8.3, aryl H); $\delta_{\mathrm{c}}(63 \mathrm{MHz}$) 16.0, 17.7, 21.7, 22.7 (Me), 24.2, 28.2 (CH_{2}), 29.0 (CH), 29.4 (quaternary C), 36.8 (quaternary C), 125.7-144.1 (aryl C) and $159.3(\mathrm{C}=\mathrm{N}) ; \mathrm{m} / \mathrm{z} 380$ $\left(M^{+}-2,3 \%\right), 227(93), 212(40), 198(56), 155(62), 138(54)$, 129 (58), 89 (100) and 77 (35). We have not been able to obtain acceptable microanalytical data for compound 13b. A ttempts to purify this compound by recrystallization in ethanol and by column chromatography on silica gel were unsuccessful due to partial decomposition.

A cetophenone-sensitized irradiation of the tosylhydrazone 12c.

 This compound ($215 \mathrm{mg}, 0.58 \mathrm{mmol}$) and acetophenone $(2 \mathrm{~g}$) in methylene dichloride were irradiated for 7 min . A fter removal of the solvent and the sensitizer, flash chromatography of the residue using hexane-ether (9:1) gave the hexahydrophenanthroline 14 ($20 \mathrm{mg}, 9 \%$) as a white solid, $\mathrm{mp} 179-180^{\circ} \mathrm{C}$ (from $\mathrm{EtOH}) ; v_{\text {max }} / \mathrm{cm}^{-1} 1610(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 0.3(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $0.9(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.4-1.6\left(1 \mathrm{H}, \mathrm{m}, 1 / 2 \mathrm{CH}_{2}\right)$, $1.8(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, $2.0\left(1 \mathrm{H}, \mathrm{m}, 1 / 2 \mathrm{CH}_{2}\right), 2.4(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{eAr}), 2.5-2.7\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $4.9(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.7, \mathrm{CH}-\mathrm{N}$), $7.0(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N}$) 7.0-7.3 ($6 \mathrm{H}, \mathrm{m}$, aryl H) and $7.7\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3\right.$, aryl H); $\delta_{\mathrm{c}}(63 \mathrm{M} \mathrm{Hz}) 20.3\left(\mathrm{CH}_{2}\right)$, $20.4(\mathrm{M} \mathrm{e}), 21.6(\mathrm{M} \mathrm{e}), 26.3\left(\mathrm{CH}_{2}\right), 27.6$ (ArM e), 33.3 (quaternary C), 37.3, $54.8(\mathrm{CH}), 126.1-143.7$ (aryl C) and $152.2(\mathrm{C}=\mathrm{N}$); $\mathrm{m} / \mathrm{z} 368(\mathrm{M}+3 \%), 304(6), 213(43), 129(30), 85$ (57) and (100) (Found $\mathrm{C}, 68.4 ; \mathrm{H}, 6.3 ; \mathrm{N}, 7.4 ; \mathrm{S}, 8.4 . \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires C ,68.45; H, 6.56; N, 7.60; S, 8.70). Further elution gave an inseparable 3:7 mixture of tosylhydrazone 12c and cyclopropane 13c (142 mg). This compound was characterized by independent synthesis. Thus, a mixture of the corresponding aldehyde ${ }^{20}$ ($102 \mathrm{mg}, 0.51 \mathrm{mmol}$) and toluene-p-sulfonylhydrazide ($95 \mathrm{mg}, 0.51 \mathrm{mmol}$) in methylene dichloride ($20 \mathrm{~cm}^{3}$) was stirred for 12 h . Conventional work-up afforded the desired cyclopropane 13c ($169 \mathrm{mg}, 90 \%$) as a white solid, mp 175$176^{\circ} \mathrm{C}$ (from EtOH); $v_{\text {max }} / \mathrm{cm}^{-1} 3190(\mathrm{NH})$ and 1610 ($\mathrm{C}=\mathrm{N}$); $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 0.8(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.2(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}), 1.6(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 2.0(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 2.4(3 \mathrm{H}, \mathrm{s}, \mathrm{MeAr}), 2.6\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$ and 7.0-7.9 ($9 \mathrm{H}, \mathrm{m}$, aryl H and $\mathrm{CH}=\mathrm{N}$); $\delta_{\mathrm{c}}(63 \mathrm{MHz}) 18.9$ (Me), $21.7(\mathrm{Me}), 22.2\left(\mathrm{CH}_{2}\right), 23.4(\mathrm{Me}), 28.5\left(\mathrm{CH}_{2}\right), 31.9$ (quaternary C), 32.5 (quaternary C), 33.2 (CH), 126.1-144.2 (aryl C) and $157.3(\mathrm{C}=\mathrm{N})$.

Acknowledgements

We thank the Direccion General de Investigacion Cientifica y Tecnica (Grant No. PB 94/0238) and the European Union (Contract no. CH R X-CT 93-0151) for financial assistance. O. C. also thanks the University Complutense for a postgraduate fellowship.

R eferences

1 D. A rmesto, F. Langa, J. A . F. M artin, R. Perez Ossorio and W. M. H orspool, J. C hem. Soc., Perkin Trans. 1, 1987, 743.
2 A. C. Pratt and Q. A bdul-M ajid, J. Chem. Soc., Perkin Trans. 1, 1987, 359.
3 (a) M. N itta, O. Inoue and M. Tada, C hem. L ett., 1977, 1065; (b) M. Nitta, I. K asahava and T. K obayashi, Bull. Chem. Soc. J pn., 1981, 54, 1275.
4 (a) D. Armesto, A. Ramos and E. P. M ayoral, Tetrahedron Lett., 1994, 35, 3785; (b) D. Armesto, M. J. Ortiz, A. Ramos, W. M. H orspool and E. P. M ayoral, J. Org. Chem., 1994, 59, 8115.
5 D. Armesto, A. Ramos, M. J. Ortiz, M. J. M ancheño and E. P. M ayoral, Recl. Trav. Chim. Pays-B as, 1995, 114, 457.
6 D. Armesto, W. M. Horspool, M. J. M ancheño and M. J. Ortiz, J. Chem. Soc., C hem. Commun., 1993, 721

7 D. Armesto, W. M. Horspool, M. G. Gallego and A. R. A garrabeitia, J. Chem. Soc., Perkin Trans. 1, 1992, 163.
8 A. J. A. Van der Weerdt and H. Cerfontain, Tetrahedron, 1981, 37, 2121.

9 M. K ojima, A. Ishida, S. Takamuku, Y. Wada and S. Yanagida, Chem. Lett., 1994, 1897.
10 M . A . M iranda and H. G arcia, C hem. R ev., 1994, 94, 1063.
11 G. Sathiamoorthi, K. Thangaraj and P. C. Srinivasan, Tetrahedron, 1990, 46, 3559
12 T. H. Smith, A . N. F ujiwara, W. W. Lee, H. I. Wu and D. W. Henry, J. Org. Chem., 1977, 42, 3653.

13 R. A. Caldwell, N. Tuquiang and A. M elton, J. Am. Chem. Soc., 1989, 111, 457.
14 D. A rmesto, W. M. H orspool, M. J. M ancheño and M. J. Ortiz, J. C hem. Soc., Perkin Trans. 1, 1992, 2325.

15 A. C. Pratt, J. C hem. Soc., Perkin Trans. 1, 1973, 2496
16 D. A rmesto and A. Ramos, Tetrahedron, 1993, 49, 7159.
17 D. Armesto, W. M. H orspool, F. Langa and A. Ramos, J. Chem. Soc., Perkin Trans. 1, 1991, 223.
18 J. Jiricny, D. M. Orere and C. B. Reese, Synthesis, 1978, 919.
19 D. A rmesto, J. A . F. M artin, R . Perez Ossorio and W. M . H orspool, Tetrahedron Lett., 1982, 23, 2149.
20 D. Armesto, M. J. Ortiz, S. Romano, A. R. A garrabeitia, M. G. G allego and A. Ramos, J. Org. C hem., 1996, 61, 1459.

Paper 6/07435।
R eceived 1st N ovember 1996
A ccepted 12th February 1997

[^0]: \dagger Permanent address: Department of Chemistry, The U niversity of Dundee, UK DD 14 HN

